COURSERA: Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization (Week 2 - Optimization Methods v1b)
These solutions are for reference only.
It is recommended that you should solve the assignment and quiz by yourself honestly then only it makes sense to complete the course.
but if you cant figure out some part of it than you can refer these solutions
make sure you understand the solution
dont just copy paste it
-------------------------------------------------------------------------------------------
optimization Methods v1b
Until now, you've always used Gradient Descent to update the parameters and minimize the cost. In this notebook, you will learn more advanced optimization methods that can speed up learning and perhaps even get you to a better final value for the cost function. Having a good optimization algorithm can be the difference between waiting days vs. just a few hours to get a good result.Gradient descent goes "downhill" on a cost function
da
for any variable a
.To get started, run the following code to import the libraries you will need.
Until now, you've always used Gradient Descent to update the parameters and minimize the cost. In this notebook, you will learn more advanced optimization methods that can speed up learning and perhaps even get you to a better final value for the cost function. Having a good optimization algorithm can be the difference between waiting days vs. just a few hours to get a good result.
Gradient descent goes "downhill" on a cost function
da
for any variable a
.To get started, run the following code to import the libraries you will need.
Updates to Assignment
If you were working on a previous version
- The current notebook filename is version "Optimization_methods_v1b".
- You can find your work in the file directory as version "Optimization methods'.
- To see the file directory, click on the Coursera logo at the top left of the notebook.
- The current notebook filename is version "Optimization_methods_v1b".
- You can find your work in the file directory as version "Optimization methods'.
- To see the file directory, click on the Coursera logo at the top left of the notebook.
List of Updates
- op_utils is now opt_utils_v1a. Assertion statement in
initialize_parameters
is fixed. - opt_utils_v1a:
compute_cost
function now accumulates total cost of the batch without taking the average (average is taken for entire epoch instead). - In
model
function, the total cost per mini-batch is accumulated, and the average of the entire epoch is taken as the average cost. So the plot of the cost function over time is now a smooth downward curve instead of an oscillating curve. - Print statements used to check each function are reformatted, and 'expected output` is reformatted to match the format of the print statements (for easier visual comparisons).
In [1]:
import numpy as np
import matplotlib.pyplot as plt
import scipy.io
import math
import sklearn
import sklearn.datasets
from opt_utils_v1a import load_params_and_grads, initialize_parameters, forward_propagation, backward_propagation
from opt_utils_v1a import compute_cost, predict, predict_dec, plot_decision_boundary, load_dataset
from testCases import *
%matplotlib inline
plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray'
- op_utils is now opt_utils_v1a. Assertion statement in
initialize_parameters
is fixed. - opt_utils_v1a:
compute_cost
function now accumulates total cost of the batch without taking the average (average is taken for entire epoch instead). - In
model
function, the total cost per mini-batch is accumulated, and the average of the entire epoch is taken as the average cost. So the plot of the cost function over time is now a smooth downward curve instead of an oscillating curve. - Print statements used to check each function are reformatted, and 'expected output` is reformatted to match the format of the print statements (for easier visual comparisons).
import numpy as np import matplotlib.pyplot as plt import scipy.io import math import sklearn import sklearn.datasets from opt_utils_v1a import load_params_and_grads, initialize_parameters, forward_propagation, backward_propagation from opt_utils_v1a import compute_cost, predict, predict_dec, plot_decision_boundary, load_dataset from testCases import * %matplotlib inline plt.rcParams['figure.figsize'] = (7.0, 4.0) # set default size of plots plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray'
1 - Gradient Descent
A simple optimization method in machine learning is gradient descent (GD). When you take gradient steps with respect to all examples on each step, it is also called Batch Gradient Descent.
Warm-up exercise: Implement the gradient descent update rule. The gradient descent rule is, for :
where L is the number of layers and is the learning rate. All parameters should be stored in the parameters
dictionary. Note that the iterator l
starts at 0 in the for
loop while the first parameters are and . You need to shift l
to l+1
when coding.
In [2]:
# GRADED FUNCTION: update_parameters_with_gd
def update_parameters_with_gd(parameters, grads, learning_rate):
"""
Update parameters using one step of gradient descent
Arguments:
parameters -- python dictionary containing your parameters to be updated:
parameters['W' + str(l)] = Wl
parameters['b' + str(l)] = bl
grads -- python dictionary containing your gradients to update each parameters:
grads['dW' + str(l)] = dWl
grads['db' + str(l)] = dbl
learning_rate -- the learning rate, scalar.
Returns:
parameters -- python dictionary containing your updated parameters
"""
L = len(parameters) // 2 # number of layers in the neural networks
# Update rule for each parameter
for l in range(L):
### START CODE HERE ### (approx. 2 lines)
parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - (learning_rate * grads['dW' + str(l+1)]) ## None
parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - (learning_rate * grads['db' + str(l+1)]) ## None
### END CODE HERE ###
return parameters
In [3]:
parameters, grads, learning_rate = update_parameters_with_gd_test_case()
print(parameters.keys())
print(grads.keys()); print()
parameters = update_parameters_with_gd(parameters, grads, learning_rate)
print("W1 =\n" + str(parameters["W1"]))
print("b1 =\n" + str(parameters["b1"]))
print("W2 =\n" + str(parameters["W2"]))
print("b2 =\n" + str(parameters["b2"]))
dict_keys(['W1', 'b1', 'W2', 'b2'])
dict_keys(['dW1', 'db1', 'dW2', 'db2'])
W1 =
[[ 1.63535156 -0.62320365 -0.53718766]
[-1.07799357 0.85639907 -2.29470142]]
b1 =
[[ 1.74604067]
[-0.75184921]]
W2 =
[[ 0.32171798 -0.25467393 1.46902454]
[-2.05617317 -0.31554548 -0.3756023 ]
[ 1.1404819 -1.09976462 -0.1612551 ]]
b2 =
[[-0.88020257]
[ 0.02561572]
[ 0.57539477]]
Expected Output:W1 =
[[ 1.63535156 -0.62320365 -0.53718766]
[-1.07799357 0.85639907 -2.29470142]]
b1 =
[[ 1.74604067]
[-0.75184921]]
W2 =
[[ 0.32171798 -0.25467393 1.46902454]
[-2.05617317 -0.31554548 -0.3756023 ]
[ 1.1404819 -1.09976462 -0.1612551 ]]
b2 =
[[-0.88020257]
[ 0.02561572]
[ 0.57539477]]
A variant of this is Stochastic Gradient Descent (SGD), which is equivalent to mini-batch gradient descent where each mini-batch has just 1 example. The update rule that you have just implemented does not change. What changes is that you would be computing gradients on just one training example at a time, rather than on the whole training set. The code examples below illustrate the difference between stochastic gradient descent and (batch) gradient descent.
- (Batch) Gradient Descent:
X = data_input
Y = labels
parameters = initialize_parameters(layers_dims)
for i in range(0, num_iterations):
# Forward propagation
a, caches = forward_propagation(X, parameters)
# Compute cost.
cost += compute_cost(a, Y)
# Backward propagation.
grads = backward_propagation(a, caches, parameters)
# Update parameters.
parameters = update_parameters(parameters, grads)
- Stochastic Gradient Descent:
X = data_input
Y = labels
parameters = initialize_parameters(layers_dims)
for i in range(0, num_iterations):
for j in range(0, m):
# Forward propagation
a, caches = forward_propagation(X[:,j], parameters)
# Compute cost
cost += compute_cost(a, Y[:,j])
# Backward propagation
grads = backward_propagation(a, caches, parameters)
# Update parameters.
parameters = update_parameters(parameters, grads)
In Stochastic Gradient Descent, you use only 1 training example before updating the gradients. When the training set is large, SGD can be faster. But the parameters will "oscillate" toward the minimum rather than converge smoothly. Here is an illustration of this:
Note also that implementing SGD requires 3 for-loops in total:
- Over the number of iterations
- Over the training examples
- Over the layers (to update all parameters, from to )
In practice, you'll often get faster results if you do not use neither the whole training set, nor only one training example, to perform each update. Mini-batch gradient descent uses an intermediate number of examples for each step. With mini-batch gradient descent, you loop over the mini-batches instead of looping over individual training examples.
**Figure 2** : **SGD vs Mini-Batch GD**
"+" denotes a minimum of the cost. Using mini-batches in your optimization algorithm often leads to faster optimization.
What you should remember:
- The difference between gradient descent, mini-batch gradient descent and stochastic gradient descent is the number of examples you use to perform one update step.
- You have to tune a learning rate hyperparameter .
- With a well-turned mini-batch size, usually it outperforms either gradient descent or stochastic gradient descent (particularly when the training set is large).
where L is the number of layers and is the learning rate. All parameters should be stored in the
parameters
dictionary. Note that the iterator l
starts at 0 in the for
loop while the first parameters are and . You need to shift l
to l+1
when coding.In [2]:
# GRADED FUNCTION: update_parameters_with_gd def update_parameters_with_gd(parameters, grads, learning_rate): """ Update parameters using one step of gradient descent Arguments: parameters -- python dictionary containing your parameters to be updated: parameters['W' + str(l)] = Wl parameters['b' + str(l)] = bl grads -- python dictionary containing your gradients to update each parameters: grads['dW' + str(l)] = dWl grads['db' + str(l)] = dbl learning_rate -- the learning rate, scalar. Returns: parameters -- python dictionary containing your updated parameters """ L = len(parameters) // 2 # number of layers in the neural networks # Update rule for each parameter for l in range(L): ### START CODE HERE ### (approx. 2 lines) parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - (learning_rate * grads['dW' + str(l+1)]) ## None parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - (learning_rate * grads['db' + str(l+1)]) ## None ### END CODE HERE ### return parameters
In [3]:
parameters, grads, learning_rate = update_parameters_with_gd_test_case() print(parameters.keys()) print(grads.keys()); print() parameters = update_parameters_with_gd(parameters, grads, learning_rate) print("W1 =\n" + str(parameters["W1"])) print("b1 =\n" + str(parameters["b1"])) print("W2 =\n" + str(parameters["W2"])) print("b2 =\n" + str(parameters["b2"]))
dict_keys(['W1', 'b1', 'W2', 'b2']) dict_keys(['dW1', 'db1', 'dW2', 'db2']) W1 = [[ 1.63535156 -0.62320365 -0.53718766] [-1.07799357 0.85639907 -2.29470142]] b1 = [[ 1.74604067] [-0.75184921]] W2 = [[ 0.32171798 -0.25467393 1.46902454] [-2.05617317 -0.31554548 -0.3756023 ] [ 1.1404819 -1.09976462 -0.1612551 ]] b2 = [[-0.88020257] [ 0.02561572] [ 0.57539477]]
Expected Output:
W1 =
[[ 1.63535156 -0.62320365 -0.53718766]
[-1.07799357 0.85639907 -2.29470142]]
b1 =
[[ 1.74604067]
[-0.75184921]]
W2 =
[[ 0.32171798 -0.25467393 1.46902454]
[-2.05617317 -0.31554548 -0.3756023 ]
[ 1.1404819 -1.09976462 -0.1612551 ]]
b2 =
[[-0.88020257]
[ 0.02561572]
[ 0.57539477]]
A variant of this is Stochastic Gradient Descent (SGD), which is equivalent to mini-batch gradient descent where each mini-batch has just 1 example. The update rule that you have just implemented does not change. What changes is that you would be computing gradients on just one training example at a time, rather than on the whole training set. The code examples below illustrate the difference between stochastic gradient descent and (batch) gradient descent.- (Batch) Gradient Descent:
X = data_input
Y = labels
parameters = initialize_parameters(layers_dims)
for i in range(0, num_iterations):
# Forward propagation
a, caches = forward_propagation(X, parameters)
# Compute cost.
cost += compute_cost(a, Y)
# Backward propagation.
grads = backward_propagation(a, caches, parameters)
# Update parameters.
parameters = update_parameters(parameters, grads)
- Stochastic Gradient Descent:
X = data_input
Y = labels
parameters = initialize_parameters(layers_dims)
for i in range(0, num_iterations):
for j in range(0, m):
# Forward propagation
a, caches = forward_propagation(X[:,j], parameters)
# Compute cost
cost += compute_cost(a, Y[:,j])
# Backward propagation
grads = backward_propagation(a, caches, parameters)
# Update parameters.
parameters = update_parameters(parameters, grads)
Note also that implementing SGD requires 3 for-loops in total:
- Over the number of iterations
- Over the training examples
- Over the layers (to update all parameters, from to )
In practice, you'll often get faster results if you do not use neither the whole training set, nor only one training example, to perform each update. Mini-batch gradient descent uses an intermediate number of examples for each step. With mini-batch gradient descent, you loop over the mini-batches instead of looping over individual training examples.
**Figure 2** : **SGD vs Mini-Batch GD** "+" denotes a minimum of the cost. Using mini-batches in your optimization algorithm often leads to faster optimization. |
What you should remember:
- The difference between gradient descent, mini-batch gradient descent and stochastic gradient descent is the number of examples you use to perform one update step.
- You have to tune a learning rate hyperparameter .
- With a well-turned mini-batch size, usually it outperforms either gradient descent or stochastic gradient descent (particularly when the training set is large).
2 - Mini-Batch Gradient descent
Let's learn how to build mini-batches from the training set (X, Y).
There are two steps:
- Shuffle: Create a shuffled version of the training set (X, Y) as shown below. Each column of X and Y represents a training example. Note that the random shuffling is done synchronously between X and Y. Such that after the shuffling the column of X is the example corresponding to the label in Y. The shuffling step ensures that examples will be split randomly into different mini-batches.
- Partition: Partition the shuffled (X, Y) into mini-batches of size
mini_batch_size
(here 64). Note that the number of training examples is not always divisible bymini_batch_size
. The last mini batch might be smaller, but you don't need to worry about this. When the final mini-batch is smaller than the fullmini_batch_size
, it will look like this:
Exercise: Implement
random_mini_batches
. We coded the shuffling part for you. To help you with the partitioning step, we give you the following code that selects the indexes for the and mini-batches:first_mini_batch_X = shuffled_X[:, 0 : mini_batch_size]
second_mini_batch_X = shuffled_X[:, mini_batch_size : 2 * mini_batch_size]
...
Note that the last mini-batch might end up smaller than
mini_batch_size=64
. Let represents rounded down to the nearest integer (this is math.floor(s)
in Python). If the total number of examples is not a multiple of mini_batch_size=64
then there will be mini-batches with a full 64 examples, and the number of examples in the final mini-batch will be ().In [4]:
# GRADED FUNCTION: random_mini_batches def random_mini_batches(X, Y, mini_batch_size = 64, seed = 0): """ Creates a list of random minibatches from (X, Y) Arguments: X -- input data, of shape (input size, number of examples) Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (1, number of examples) mini_batch_size -- size of the mini-batches, integer Returns: mini_batches -- list of synchronous (mini_batch_X, mini_batch_Y) """ np.random.seed(seed) # To make your "random" minibatches the same as ours m = X.shape[1] # number of training examples mini_batches = [] # Step 1: Shuffle (X, Y) permutation = list(np.random.permutation(m)) shuffled_X = X[:, permutation] shuffled_Y = Y[:, permutation].reshape((1,m)) # Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case. num_complete_minibatches = math.floor(m/mini_batch_size) # number of mini batches of size mini_batch_size in your partitionning for k in range(0, num_complete_minibatches): ### START CODE HERE ### (approx. 2 lines) mini_batch_X = shuffled_X[:, k * mini_batch_size : (k+1) * mini_batch_size] ##None mini_batch_Y = shuffled_Y[:, k * mini_batch_size : (k+1) * mini_batch_size] ##None ### END CODE HERE ### mini_batch = (mini_batch_X, mini_batch_Y) mini_batches.append(mini_batch) # Handling the end case (last mini-batch < mini_batch_size) if m % mini_batch_size != 0: ### START CODE HERE ### (approx. 2 lines) mini_batch_X = shuffled_X[:, num_complete_minibatches * mini_batch_size : m] ##None mini_batch_Y = shuffled_Y[:, num_complete_minibatches * mini_batch_size : m] ##None ### END CODE HERE ### mini_batch = (mini_batch_X, mini_batch_Y) mini_batches.append(mini_batch) return mini_batches
In [5]:
X_assess, Y_assess, mini_batch_size = random_mini_batches_test_case() mini_batches = random_mini_batches(X_assess, Y_assess, mini_batch_size) print ("shape of the 1st mini_batch_X: " + str(mini_batches[0][0].shape)) print ("shape of the 2nd mini_batch_X: " + str(mini_batches[1][0].shape)) print ("shape of the 3rd mini_batch_X: " + str(mini_batches[2][0].shape)) print ("shape of the 1st mini_batch_Y: " + str(mini_batches[0][1].shape)) print ("shape of the 2nd mini_batch_Y: " + str(mini_batches[1][1].shape)) print ("shape of the 3rd mini_batch_Y: " + str(mini_batches[2][1].shape)) print ("mini batch sanity check: " + str(mini_batches[0][0][0][0:3]))
shape of the 1st mini_batch_X: (12288, 64)
shape of the 2nd mini_batch_X: (12288, 64)
shape of the 3rd mini_batch_X: (12288, 20)
shape of the 1st mini_batch_Y: (1, 64)
shape of the 2nd mini_batch_Y: (1, 64)
shape of the 3rd mini_batch_Y: (1, 20)
mini batch sanity check: [ 0.90085595 -0.7612069 0.2344157 ]
Expected Output:
**shape of the 1st mini_batch_X** (12288, 64) **shape of the 2nd mini_batch_X** (12288, 64) **shape of the 3rd mini_batch_X** (12288, 20) **shape of the 1st mini_batch_Y** (1, 64) **shape of the 2nd mini_batch_Y** (1, 64) **shape of the 3rd mini_batch_Y** (1, 20) **mini batch sanity check** [ 0.90085595 -0.7612069 0.2344157 ]
What you should remember:
- Shuffling and Partitioning are the two steps required to build mini-batches
- Powers of two are often chosen to be the mini-batch size, e.g., 16, 32, 64, 128.
shape of the 1st mini_batch_X: (12288, 64) shape of the 2nd mini_batch_X: (12288, 64) shape of the 3rd mini_batch_X: (12288, 20) shape of the 1st mini_batch_Y: (1, 64) shape of the 2nd mini_batch_Y: (1, 64) shape of the 3rd mini_batch_Y: (1, 20) mini batch sanity check: [ 0.90085595 -0.7612069 0.2344157 ]
Expected Output:
**shape of the 1st mini_batch_X** | (12288, 64) |
**shape of the 2nd mini_batch_X** | (12288, 64) |
**shape of the 3rd mini_batch_X** | (12288, 20) |
**shape of the 1st mini_batch_Y** | (1, 64) |
**shape of the 2nd mini_batch_Y** | (1, 64) |
**shape of the 3rd mini_batch_Y** | (1, 20) |
**mini batch sanity check** | [ 0.90085595 -0.7612069 0.2344157 ] |
What you should remember:
- Shuffling and Partitioning are the two steps required to build mini-batches
- Powers of two are often chosen to be the mini-batch size, e.g., 16, 32, 64, 128.
3 - Momentum
Because mini-batch gradient descent makes a parameter update after seeing just a subset of examples, the direction of the update has some variance, and so the path taken by mini-batch gradient descent will "oscillate" toward convergence. Using momentum can reduce these oscillations.
Momentum takes into account the past gradients to smooth out the update. We will store the 'direction' of the previous gradients in the variable . Formally, this will be the exponentially weighted average of the gradient on previous steps. You can also think of as the "velocity" of a ball rolling downhill, building up speed (and momentum) according to the direction of the gradient/slope of the hill.
Exercise: Initialize the velocity. The velocity, , is a python dictionary that needs to be initialized with arrays of zeros. Its keys are the same as those in the
grads
dictionary, that is: for :v["dW" + str(l+1)] = ... #(numpy array of zeros with the same shape as parameters["W" + str(l+1)]) v["db" + str(l+1)] = ... #(numpy array of zeros with the same shape as parameters["b" + str(l+1)])
Note that the iterator l starts at 0 in the for loop while the first parameters are v["dW1"] and v["db1"] (that's a "one" on the superscript). This is why we are shifting l to l+1 in the for
loop.In [6]:
# GRADED FUNCTION: initialize_velocity
def initialize_velocity(parameters):
"""
Initializes the velocity as a python dictionary with:
- keys: "dW1", "db1", ..., "dWL", "dbL"
- values: numpy arrays of zeros of the same shape as the corresponding gradients/parameters.
Arguments:
parameters -- python dictionary containing your parameters.
parameters['W' + str(l)] = Wl
parameters['b' + str(l)] = bl
Returns:
v -- python dictionary containing the current velocity.
v['dW' + str(l)] = velocity of dWl
v['db' + str(l)] = velocity of dbl
"""
L = len(parameters) // 2 # number of layers in the neural networks
v = {}
# Initialize velocity
for l in range(L):
### START CODE HERE ### (approx. 2 lines)
##### SOLUTION 1: WORKING #####
v["dW" + str(l+1)] = np.zeros((parameters["W" + str(l+1)].shape[0], parameters["W" + str(l+1)].shape[1])) ##None
v["db" + str(l+1)] = np.zeros((parameters["b" + str(l+1)].shape[0], parameters["b" + str(l+1)].shape[1])) ##None
##### SOLUTION 2: WORKING #####
#v["dW" + str(l + 1)] = np.zeros_like(parameters["W" + str(l+1)])
#v["db" + str(l + 1)] = np.zeros_like(parameters["b" + str(l+1)])
### END CODE HERE ###
return v
In [7]:
parameters = initialize_velocity_test_case()
v = initialize_velocity(parameters)
print("v[\"dW1\"] =\n" + str(v["dW1"]))
print("v[\"db1\"] =\n" + str(v["db1"]))
print("v[\"dW2\"] =\n" + str(v["dW2"]))
print("v[\"db2\"] =\n" + str(v["db2"]))
v["dW1"] =
[[ 0. 0. 0.]
[ 0. 0. 0.]]
v["db1"] =
[[ 0.]
[ 0.]]
v["dW2"] =
[[ 0. 0. 0.]
[ 0. 0. 0.]
[ 0. 0. 0.]]
v["db2"] =
[[ 0.]
[ 0.]
[ 0.]]
Expected Output:
v["dW1"] =
[[ 0. 0. 0.]
[ 0. 0. 0.]]
v["db1"] =
[[ 0.]
[ 0.]]
v["dW2"] =
[[ 0. 0. 0.]
[ 0. 0. 0.]
[ 0. 0. 0.]]
v["db2"] =
[[ 0.]
[ 0.]
[ 0.]]
Exercise: Now, implement the parameters update with momentum. The momentum update rule is, for :
where L is the number of layers, is the momentum and is the learning rate. All parameters should be stored in the parameters
dictionary. Note that the iterator l
starts at 0 in the for
loop while the first parameters are and (that's a "one" on the superscript). So you will need to shift l
to l+1
when coding.
In [8]:
# GRADED FUNCTION: update_parameters_with_momentum
def update_parameters_with_momentum(parameters, grads, v, beta, learning_rate):
"""
Update parameters using Momentum
Arguments:
parameters -- python dictionary containing your parameters:
parameters['W' + str(l)] = Wl
parameters['b' + str(l)] = bl
grads -- python dictionary containing your gradients for each parameters:
grads['dW' + str(l)] = dWl
grads['db' + str(l)] = dbl
v -- python dictionary containing the current velocity:
v['dW' + str(l)] = ...
v['db' + str(l)] = ...
beta -- the momentum hyperparameter, scalar
learning_rate -- the learning rate, scalar
Returns:
parameters -- python dictionary containing your updated parameters
v -- python dictionary containing your updated velocities
"""
L = len(parameters) // 2 # number of layers in the neural networks
# Momentum update for each parameter
for l in range(L):
### START CODE HERE ### (approx. 4 lines)
# compute velocities
v["dW" + str(l+1)] = beta * v["dW" + str(l+1)] + (1 - beta) * grads['dW' + str(l+1)] ##None
v["db" + str(l+1)] = beta * v["db" + str(l+1)] + (1 - beta) * grads['db' + str(l+1)] ##None
# update parameters
parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate * v["dW" + str(l+1)] ##None
parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate * v["db" + str(l+1)] ##None
### END CODE HERE ###
return parameters, v
In [9]:
parameters, grads, v = update_parameters_with_momentum_test_case()
parameters, v = update_parameters_with_momentum(parameters, grads, v, beta = 0.9, learning_rate = 0.01)
print("W1 = \n" + str(parameters["W1"]))
print("b1 = \n" + str(parameters["b1"]))
print("W2 = \n" + str(parameters["W2"]))
print("b2 = \n" + str(parameters["b2"]))
print("v[\"dW1\"] = \n" + str(v["dW1"]))
print("v[\"db1\"] = \n" + str(v["db1"]))
print("v[\"dW2\"] = \n" + str(v["dW2"]))
print("v[\"db2\"] = v" + str(v["db2"]))
W1 =
[[ 1.62544598 -0.61290114 -0.52907334]
[-1.07347112 0.86450677 -2.30085497]]
b1 =
[[ 1.74493465]
[-0.76027113]]
W2 =
[[ 0.31930698 -0.24990073 1.4627996 ]
[-2.05974396 -0.32173003 -0.38320915]
[ 1.13444069 -1.0998786 -0.1713109 ]]
b2 =
[[-0.87809283]
[ 0.04055394]
[ 0.58207317]]
v["dW1"] =
[[-0.11006192 0.11447237 0.09015907]
[ 0.05024943 0.09008559 -0.06837279]]
v["db1"] =
[[-0.01228902]
[-0.09357694]]
v["dW2"] =
[[-0.02678881 0.05303555 -0.06916608]
[-0.03967535 -0.06871727 -0.08452056]
[-0.06712461 -0.00126646 -0.11173103]]
v["db2"] = v[[ 0.02344157]
[ 0.16598022]
[ 0.07420442]]
Expected Output:W1 =
[[ 1.62544598 -0.61290114 -0.52907334]
[-1.07347112 0.86450677 -2.30085497]]
b1 =
[[ 1.74493465]
[-0.76027113]]
W2 =
[[ 0.31930698 -0.24990073 1.4627996 ]
[-2.05974396 -0.32173003 -0.38320915]
[ 1.13444069 -1.0998786 -0.1713109 ]]
b2 =
[[-0.87809283]
[ 0.04055394]
[ 0.58207317]]
v["dW1"] =
[[-0.11006192 0.11447237 0.09015907]
[ 0.05024943 0.09008559 -0.06837279]]
v["db1"] =
[[-0.01228902]
[-0.09357694]]
v["dW2"] =
[[-0.02678881 0.05303555 -0.06916608]
[-0.03967535 -0.06871727 -0.08452056]
[-0.06712461 -0.00126646 -0.11173103]]
v["db2"] = v[[ 0.02344157]
[ 0.16598022]
[ 0.07420442]]
Note that:- The velocity is initialized with zeros. So the algorithm will take a few iterations to "build up" velocity and start to take bigger steps.
- If , then this just becomes standard gradient descent without momentum.
How do you choose ?- The larger the momentum is, the smoother the update because the more we take the past gradients into account. But if is too big, it could also smooth out the updates too much.
- Common values for range from 0.8 to 0.999. If you don't feel inclined to tune this, is often a reasonable default.
- Tuning the optimal for your model might need trying several values to see what works best in term of reducing the value of the cost function .
What you should remember:
- Momentum takes past gradients into account to smooth out the steps of gradient descent. It can be applied with batch gradient descent, mini-batch gradient descent or stochastic gradient descent.
- You have to tune a momentum hyperparameter and a learning rate .
for
loop.# GRADED FUNCTION: initialize_velocity def initialize_velocity(parameters): """ Initializes the velocity as a python dictionary with: - keys: "dW1", "db1", ..., "dWL", "dbL" - values: numpy arrays of zeros of the same shape as the corresponding gradients/parameters. Arguments: parameters -- python dictionary containing your parameters. parameters['W' + str(l)] = Wl parameters['b' + str(l)] = bl Returns: v -- python dictionary containing the current velocity. v['dW' + str(l)] = velocity of dWl v['db' + str(l)] = velocity of dbl """ L = len(parameters) // 2 # number of layers in the neural networks v = {} # Initialize velocity for l in range(L): ### START CODE HERE ### (approx. 2 lines) ##### SOLUTION 1: WORKING ##### v["dW" + str(l+1)] = np.zeros((parameters["W" + str(l+1)].shape[0], parameters["W" + str(l+1)].shape[1])) ##None v["db" + str(l+1)] = np.zeros((parameters["b" + str(l+1)].shape[0], parameters["b" + str(l+1)].shape[1])) ##None ##### SOLUTION 2: WORKING ##### #v["dW" + str(l + 1)] = np.zeros_like(parameters["W" + str(l+1)]) #v["db" + str(l + 1)] = np.zeros_like(parameters["b" + str(l+1)]) ### END CODE HERE ### return v
parameters = initialize_velocity_test_case() v = initialize_velocity(parameters) print("v[\"dW1\"] =\n" + str(v["dW1"])) print("v[\"db1\"] =\n" + str(v["db1"])) print("v[\"dW2\"] =\n" + str(v["dW2"])) print("v[\"db2\"] =\n" + str(v["db2"]))
Expected Output:
v["dW1"] =
[[ 0. 0. 0.]
[ 0. 0. 0.]]
v["db1"] =
[[ 0.]
[ 0.]]
v["dW2"] =
[[ 0. 0. 0.]
[ 0. 0. 0.]
[ 0. 0. 0.]]
v["db2"] =
[[ 0.]
[ 0.]
[ 0.]]
parameters
dictionary. Note that the iterator l
starts at 0 in the for
loop while the first parameters are and (that's a "one" on the superscript). So you will need to shift l
to l+1
when coding.# GRADED FUNCTION: update_parameters_with_momentum def update_parameters_with_momentum(parameters, grads, v, beta, learning_rate): """ Update parameters using Momentum Arguments: parameters -- python dictionary containing your parameters: parameters['W' + str(l)] = Wl parameters['b' + str(l)] = bl grads -- python dictionary containing your gradients for each parameters: grads['dW' + str(l)] = dWl grads['db' + str(l)] = dbl v -- python dictionary containing the current velocity: v['dW' + str(l)] = ... v['db' + str(l)] = ... beta -- the momentum hyperparameter, scalar learning_rate -- the learning rate, scalar Returns: parameters -- python dictionary containing your updated parameters v -- python dictionary containing your updated velocities """ L = len(parameters) // 2 # number of layers in the neural networks # Momentum update for each parameter for l in range(L): ### START CODE HERE ### (approx. 4 lines) # compute velocities v["dW" + str(l+1)] = beta * v["dW" + str(l+1)] + (1 - beta) * grads['dW' + str(l+1)] ##None v["db" + str(l+1)] = beta * v["db" + str(l+1)] + (1 - beta) * grads['db' + str(l+1)] ##None # update parameters parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate * v["dW" + str(l+1)] ##None parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate * v["db" + str(l+1)] ##None ### END CODE HERE ### return parameters, v
parameters, grads, v = update_parameters_with_momentum_test_case() parameters, v = update_parameters_with_momentum(parameters, grads, v, beta = 0.9, learning_rate = 0.01) print("W1 = \n" + str(parameters["W1"])) print("b1 = \n" + str(parameters["b1"])) print("W2 = \n" + str(parameters["W2"])) print("b2 = \n" + str(parameters["b2"])) print("v[\"dW1\"] = \n" + str(v["dW1"])) print("v[\"db1\"] = \n" + str(v["db1"])) print("v[\"dW2\"] = \n" + str(v["dW2"])) print("v[\"db2\"] = v" + str(v["db2"]))
W1 =
[[ 1.62544598 -0.61290114 -0.52907334]
[-1.07347112 0.86450677 -2.30085497]]
b1 =
[[ 1.74493465]
[-0.76027113]]
W2 =
[[ 0.31930698 -0.24990073 1.4627996 ]
[-2.05974396 -0.32173003 -0.38320915]
[ 1.13444069 -1.0998786 -0.1713109 ]]
b2 =
[[-0.87809283]
[ 0.04055394]
[ 0.58207317]]
v["dW1"] =
[[-0.11006192 0.11447237 0.09015907]
[ 0.05024943 0.09008559 -0.06837279]]
v["db1"] =
[[-0.01228902]
[-0.09357694]]
v["dW2"] =
[[-0.02678881 0.05303555 -0.06916608]
[-0.03967535 -0.06871727 -0.08452056]
[-0.06712461 -0.00126646 -0.11173103]]
v["db2"] = v[[ 0.02344157]
[ 0.16598022]
[ 0.07420442]]
How do you choose ?
- The larger the momentum is, the smoother the update because the more we take the past gradients into account. But if is too big, it could also smooth out the updates too much.
- Common values for range from 0.8 to 0.999. If you don't feel inclined to tune this, is often a reasonable default.
- Tuning the optimal for your model might need trying several values to see what works best in term of reducing the value of the cost function .
What you should remember:
- Momentum takes past gradients into account to smooth out the steps of gradient descent. It can be applied with batch gradient descent, mini-batch gradient descent or stochastic gradient descent.
- You have to tune a momentum hyperparameter and a learning rate .
4 - Adam
Adam is one of the most effective optimization algorithms for training neural networks. It combines ideas from RMSProp (described in lecture) and Momentum.
How does Adam work?
- It calculates an exponentially weighted average of past gradients, and stores it in variables (before bias correction) and (with bias correction).
- It calculates an exponentially weighted average of the squares of the past gradients, and stores it in variables (before bias correction) and (with bias correction).
- It updates parameters in a direction based on combining information from "1" and "2".
The update rule is, for :
where:
- t counts the number of steps taken of Adam
- L is the number of layers
- and are hyperparameters that control the two exponentially weighted averages.
- is the learning rate
- is a very small number to avoid dividing by zero
As usual, we will store all parameters in the
parameters
dictionaryExercise: Initialize the Adam variables which keep track of the past information.
Instruction: The variables are python dictionaries that need to be initialized with arrays of zeros. Their keys are the same as for
grads
, that is: for :v["dW" + str(l+1)] = ... #(numpy array of zeros with the same shape as parameters["W" + str(l+1)])
v["db" + str(l+1)] = ... #(numpy array of zeros with the same shape as parameters["b" + str(l+1)])
s["dW" + str(l+1)] = ... #(numpy array of zeros with the same shape as parameters["W" + str(l+1)])
s["db" + str(l+1)] = ... #(numpy array of zeros with the same shape as parameters["b" + str(l+1)])
In [10]:
# GRADED FUNCTION: initialize_adam def initialize_adam(parameters) : """ Initializes v and s as two python dictionaries with: - keys: "dW1", "db1", ..., "dWL", "dbL" - values: numpy arrays of zeros of the same shape as the corresponding gradients/parameters. Arguments: parameters -- python dictionary containing your parameters. parameters["W" + str(l)] = Wl parameters["b" + str(l)] = bl Returns: v -- python dictionary that will contain the exponentially weighted average of the gradient. v["dW" + str(l)] = ... v["db" + str(l)] = ... s -- python dictionary that will contain the exponentially weighted average of the squared gradient. s["dW" + str(l)] = ... s["db" + str(l)] = ... """ L = len(parameters) // 2 # number of layers in the neural networks v = {} s = {} # Initialize v, s. Input: "parameters". Outputs: "v, s". for l in range(L): ### START CODE HERE ### (approx. 4 lines) v["dW" + str(l+1)] = np.zeros_like(parameters["W" + str(l+1)]) ##None v["db" + str(l+1)] = np.zeros_like(parameters["b" + str(l+1)]) ##None s["dW" + str(l+1)] = np.zeros_like(parameters["W" + str(l+1)]) ##None s["db" + str(l+1)] = np.zeros_like(parameters["b" + str(l+1)]) ##None ### END CODE HERE ### return v, s
In [11]:
parameters = initialize_adam_test_case() v, s = initialize_adam(parameters) print("v[\"dW1\"] = \n" + str(v["dW1"])) print("v[\"db1\"] = \n" + str(v["db1"])) print("v[\"dW2\"] = \n" + str(v["dW2"])) print("v[\"db2\"] = \n" + str(v["db2"])) print("s[\"dW1\"] = \n" + str(s["dW1"])) print("s[\"db1\"] = \n" + str(s["db1"])) print("s[\"dW2\"] = \n" + str(s["dW2"])) print("s[\"db2\"] = \n" + str(s["db2"]))
v["dW1"] = [[ 0. 0. 0.] [ 0. 0. 0.]] v["db1"] = [[ 0.] [ 0.]] v["dW2"] = [[ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.]] v["db2"] = [[ 0.] [ 0.] [ 0.]] s["dW1"] = [[ 0. 0. 0.] [ 0. 0. 0.]] s["db1"] = [[ 0.] [ 0.]] s["dW2"] = [[ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.]] s["db2"] = [[ 0.] [ 0.] [ 0.]]
Expected Output:v["dW1"] = [[ 0. 0. 0.] [ 0. 0. 0.]] v["db1"] = [[ 0.] [ 0.]] v["dW2"] = [[ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.]] v["db2"] = [[ 0.] [ 0.] [ 0.]] s["dW1"] = [[ 0. 0. 0.] [ 0. 0. 0.]] s["db1"] = [[ 0.] [ 0.]] s["dW2"] = [[ 0. 0. 0.] [ 0. 0. 0.] [ 0. 0. 0.]] s["db2"] = [[ 0.] [ 0.] [ 0.]]
Exercise: Now, implement the parameters update with Adam. Recall the general update rule is, for :
Note that the iterator
l
starts at 0 in the for
loop while the first parameters are and . You need to shift l
to l+1
when coding.In [12]:
# GRADED FUNCTION: update_parameters_with_adam def update_parameters_with_adam(parameters, grads, v, s, t, learning_rate = 0.01, beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8): """ Update parameters using Adam Arguments: parameters -- python dictionary containing your parameters: parameters['W' + str(l)] = Wl parameters['b' + str(l)] = bl grads -- python dictionary containing your gradients for each parameters: grads['dW' + str(l)] = dWl grads['db' + str(l)] = dbl v -- Adam variable, moving average of the first gradient, python dictionary s -- Adam variable, moving average of the squared gradient, python dictionary learning_rate -- the learning rate, scalar. beta1 -- Exponential decay hyperparameter for the first moment estimates beta2 -- Exponential decay hyperparameter for the second moment estimates epsilon -- hyperparameter preventing division by zero in Adam updates Returns: parameters -- python dictionary containing your updated parameters v -- Adam variable, moving average of the first gradient, python dictionary s -- Adam variable, moving average of the squared gradient, python dictionary """ L = len(parameters) // 2 # number of layers in the neural networks v_corrected = {} # Initializing first moment estimate, python dictionary s_corrected = {} # Initializing second moment estimate, python dictionary # Perform Adam update on all parameters for l in range(L): # Moving average of the gradients. Inputs: "v, grads, beta1". Output: "v". ### START CODE HERE ### (approx. 2 lines) v["dW" + str(l+1)] = beta1 * v["dW" + str(l+1)] + (1 - beta1) * grads["dW" + str(l+1)] ##None v["db" + str(l+1)] = beta1 * v["db" + str(l+1)] + (1 - beta1) * grads["db" + str(l+1)] ##None ### END CODE HERE ### # Compute bias-corrected first moment estimate. Inputs: "v, beta1, t". Output: "v_corrected". ### START CODE HERE ### (approx. 2 lines) v_corrected["dW" + str(l+1)] = v["dW" + str(l+1)] / (1 - np.power(beta1,t)) ##None v_corrected["db" + str(l+1)] = v["db" + str(l+1)] / (1 - np.power(beta1,t)) ##None ### END CODE HERE ### # Moving average of the squared gradients. Inputs: "s, grads, beta2". Output: "s". ### START CODE HERE ### (approx. 2 lines) s["dW" + str(l+1)] = beta2 * s["dW" + str(l+1)] + (1 - beta2) * np.power(grads["dW" + str(l+1)],2) ##None s["db" + str(l+1)] = beta2 * s["db" + str(l+1)] + (1 - beta2) * np.power(grads["db" + str(l+1)],2) ##None ### END CODE HERE ### # Compute bias-corrected second raw moment estimate. Inputs: "s, beta2, t". Output: "s_corrected". ### START CODE HERE ### (approx. 2 lines) s_corrected["dW" + str(l+1)] = s["dW" + str(l+1)] / (1 - np.power(beta2,t)) ##None s_corrected["db" + str(l+1)] = s["db" + str(l+1)] / (1 - np.power(beta2,t)) ##None ### END CODE HERE ### # Update parameters. Inputs: "parameters, learning_rate, v_corrected, s_corrected, epsilon". Output: "parameters". ### START CODE HERE ### (approx. 2 lines) parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate * v_corrected["dW" + str(l+1)] / (np.sqrt(s_corrected["dW" + str(l+1)]) + epsilon) ##None parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate * v_corrected["db" + str(l+1)] / (np.sqrt(s_corrected["db" + str(l+1)]) + epsilon) ##None ### END CODE HERE ### return parameters, v, s
In [13]:
parameters, grads, v, s = update_parameters_with_adam_test_case() parameters, v, s = update_parameters_with_adam(parameters, grads, v, s, t = 2) print("W1 = \n" + str(parameters["W1"])) print("b1 = \n" + str(parameters["b1"])) print("W2 = \n" + str(parameters["W2"])) print("b2 = \n" + str(parameters["b2"])) print("v[\"dW1\"] = \n" + str(v["dW1"])) print("v[\"db1\"] = \n" + str(v["db1"])) print("v[\"dW2\"] = \n" + str(v["dW2"])) print("v[\"db2\"] = \n" + str(v["db2"])) print("s[\"dW1\"] = \n" + str(s["dW1"])) print("s[\"db1\"] = \n" + str(s["db1"])) print("s[\"dW2\"] = \n" + str(s["dW2"])) print("s[\"db2\"] = \n" + str(s["db2"]))
W1 = [[ 1.63178673 -0.61919778 -0.53561312] [-1.08040999 0.85796626 -2.29409733]] b1 = [[ 1.75225313] [-0.75376553]] W2 = [[ 0.32648046 -0.25681174 1.46954931] [-2.05269934 -0.31497584 -0.37661299] [ 1.14121081 -1.09244991 -0.16498684]] b2 = [[-0.88529979] [ 0.03477238] [ 0.57537385]] v["dW1"] = [[-0.11006192 0.11447237 0.09015907] [ 0.05024943 0.09008559 -0.06837279]] v["db1"] = [[-0.01228902] [-0.09357694]] v["dW2"] = [[-0.02678881 0.05303555 -0.06916608] [-0.03967535 -0.06871727 -0.08452056] [-0.06712461 -0.00126646 -0.11173103]] v["db2"] = [[ 0.02344157] [ 0.16598022] [ 0.07420442]] s["dW1"] = [[ 0.00121136 0.00131039 0.00081287] [ 0.0002525 0.00081154 0.00046748]] s["db1"] = [[ 1.51020075e-05] [ 8.75664434e-04]] s["dW2"] = [[ 7.17640232e-05 2.81276921e-04 4.78394595e-04] [ 1.57413361e-04 4.72206320e-04 7.14372576e-04] [ 4.50571368e-04 1.60392066e-07 1.24838242e-03]] s["db2"] = [[ 5.49507194e-05] [ 2.75494327e-03] [ 5.50629536e-04]]
Expected Output:W1 = [[ 1.63178673 -0.61919778 -0.53561312] [-1.08040999 0.85796626 -2.29409733]] b1 = [[ 1.75225313] [-0.75376553]] W2 = [[ 0.32648046 -0.25681174 1.46954931] [-2.05269934 -0.31497584 -0.37661299] [ 1.14121081 -1.09245036 -0.16498684]] b2 = [[-0.88529978] [ 0.03477238] [ 0.57537385]] v["dW1"] = [[-0.11006192 0.11447237 0.09015907] [ 0.05024943 0.09008559 -0.06837279]] v["db1"] = [[-0.01228902] [-0.09357694]] v["dW2"] = [[-0.02678881 0.05303555 -0.06916608] [-0.03967535 -0.06871727 -0.08452056] [-0.06712461 -0.00126646 -0.11173103]] v["db2"] = [[ 0.02344157] [ 0.16598022] [ 0.07420442]] s["dW1"] = [[ 0.00121136 0.00131039 0.00081287] [ 0.0002525 0.00081154 0.00046748]] s["db1"] = [[ 1.51020075e-05] [ 8.75664434e-04]] s["dW2"] = [[ 7.17640232e-05 2.81276921e-04 4.78394595e-04] [ 1.57413361e-04 4.72206320e-04 7.14372576e-04] [ 4.50571368e-04 1.60392066e-07 1.24838242e-03]] s["db2"] = [[ 5.49507194e-05] [ 2.75494327e-03] [ 5.50629536e-04]]
You now have three working optimization algorithms (mini-batch gradient descent, Momentum, Adam). Let's implement a model with each of these optimizers and observe the difference.
5 - Model with different optimization algorithms
Lets use the following "moons" dataset to test the different optimization methods. (The dataset is named "moons" because the data from each of the two classes looks a bit like a crescent-shaped moon.)
In [14]:
train_X, train_Y = load_dataset()
We have already implemented a 3-layer neural network. You will train it with:
- Mini-batch Gradient Descent: it will call your function:
update_parameters_with_gd()
- Mini-batch Momentum: it will call your functions:
initialize_velocity()
andupdate_parameters_with_momentum()
- Mini-batch Adam: it will call your functions:
initialize_adam()
andupdate_parameters_with_adam()
In [15]:
def model(X, Y, layers_dims, optimizer, learning_rate = 0.0007, mini_batch_size = 64, beta = 0.9, beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8, num_epochs = 10000, print_cost = True): """ 3-layer neural network model which can be run in different optimizer modes. Arguments: X -- input data, of shape (2, number of examples) Y -- true "label" vector (1 for blue dot / 0 for red dot), of shape (1, number of examples) layers_dims -- python list, containing the size of each layer learning_rate -- the learning rate, scalar. mini_batch_size -- the size of a mini batch beta -- Momentum hyperparameter beta1 -- Exponential decay hyperparameter for the past gradients estimates beta2 -- Exponential decay hyperparameter for the past squared gradients estimates epsilon -- hyperparameter preventing division by zero in Adam updates num_epochs -- number of epochs print_cost -- True to print the cost every 1000 epochs Returns: parameters -- python dictionary containing your updated parameters """ L = len(layers_dims) # number of layers in the neural networks costs = [] # to keep track of the cost t = 0 # initializing the counter required for Adam update seed = 10 # For grading purposes, so that your "random" minibatches are the same as ours m = X.shape[1] # number of training examples # Initialize parameters parameters = initialize_parameters(layers_dims) # Initialize the optimizer if optimizer == "gd": pass # no initialization required for gradient descent elif optimizer == "momentum": v = initialize_velocity(parameters) elif optimizer == "adam": v, s = initialize_adam(parameters) # Optimization loop for i in range(num_epochs): # Define the random minibatches. We increment the seed to reshuffle differently the dataset after each epoch seed = seed + 1 minibatches = random_mini_batches(X, Y, mini_batch_size, seed) cost_total = 0 for minibatch in minibatches: # Select a minibatch (minibatch_X, minibatch_Y) = minibatch # Forward propagation a3, caches = forward_propagation(minibatch_X, parameters) # Compute cost and add to the cost total cost_total += compute_cost(a3, minibatch_Y) # Backward propagation grads = backward_propagation(minibatch_X, minibatch_Y, caches) # Update parameters if optimizer == "gd": parameters = update_parameters_with_gd(parameters, grads, learning_rate) elif optimizer == "momentum": parameters, v = update_parameters_with_momentum(parameters, grads, v, beta, learning_rate) elif optimizer == "adam": t = t + 1 # Adam counter parameters, v, s = update_parameters_with_adam(parameters, grads, v, s, t, learning_rate, beta1, beta2, epsilon) cost_avg = cost_total / m # Print the cost every 1000 epoch if print_cost and i % 1000 == 0: print ("Cost after epoch %i: %f" %(i, cost_avg)) if print_cost and i % 100 == 0: costs.append(cost_avg) # plot the cost plt.plot(costs) plt.ylabel('cost') plt.xlabel('epochs (per 100)') plt.title("Learning rate = " + str(learning_rate)) plt.show() return parameters
You will now run this 3 layer neural network with each of the 3 optimization methods.
5.1 - Mini-batch Gradient descent
Run the following code to see how the model does with mini-batch gradient descent.
In [16]:
# train 3-layer model layers_dims = [train_X.shape[0], 5, 2, 1] parameters = model(train_X, train_Y, layers_dims, optimizer = "gd") # Predict predictions = predict(train_X, train_Y, parameters) # Plot decision boundary plt.title("Model with Gradient Descent optimization") axes = plt.gca() axes.set_xlim([-1.5,2.5]) axes.set_ylim([-1,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)
Cost after epoch 0: 0.702405 Cost after epoch 1000: 0.668101 Cost after epoch 2000: 0.635288 Cost after epoch 3000: 0.600491 Cost after epoch 4000: 0.573367 Cost after epoch 5000: 0.551977 Cost after epoch 6000: 0.532370 Cost after epoch 7000: 0.514007 Cost after epoch 8000: 0.496472 Cost after epoch 9000: 0.468014
Accuracy: 0.796666666667
5.2 - Mini-batch gradient descent with momentum
Run the following code to see how the model does with momentum. Because this example is relatively simple, the gains from using momemtum are small; but for more complex problems you might see bigger gains.In [17]:
# train 3-layer model layers_dims = [train_X.shape[0], 5, 2, 1] parameters = model(train_X, train_Y, layers_dims, beta = 0.9, optimizer = "momentum") # Predict predictions = predict(train_X, train_Y, parameters) # Plot decision boundary plt.title("Model with Momentum optimization") axes = plt.gca() axes.set_xlim([-1.5,2.5]) axes.set_ylim([-1,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)
Cost after epoch 0: 0.702413 Cost after epoch 1000: 0.668167 Cost after epoch 2000: 0.635388 Cost after epoch 3000: 0.600591 Cost after epoch 4000: 0.573444 Cost after epoch 5000: 0.552058 Cost after epoch 6000: 0.532458 Cost after epoch 7000: 0.514101 Cost after epoch 8000: 0.496652 Cost after epoch 9000: 0.468160
Accuracy: 0.796666666667
5.3 - Mini-batch with Adam mode
Run the following code to see how the model does with Adam.In [18]:
# train 3-layer model layers_dims = [train_X.shape[0], 5, 2, 1] parameters = model(train_X, train_Y, layers_dims, optimizer = "adam") # Predict predictions = predict(train_X, train_Y, parameters) # Plot decision boundary plt.title("Model with Adam optimization") axes = plt.gca() axes.set_xlim([-1.5,2.5]) axes.set_ylim([-1,1.5]) plot_decision_boundary(lambda x: predict_dec(parameters, x.T), train_X, train_Y)
Cost after epoch 0: 0.702166 Cost after epoch 1000: 0.167845 Cost after epoch 2000: 0.141316 Cost after epoch 3000: 0.138788 Cost after epoch 4000: 0.136066 Cost after epoch 5000: 0.134240 Cost after epoch 6000: 0.131127 Cost after epoch 7000: 0.130216 Cost after epoch 8000: 0.129623 Cost after epoch 9000: 0.129118
Accuracy: 0.94
5.4 - Summary
**optimization method** **accuracy** **cost shape** Gradient descent 79.7% oscillations Momentum 79.7% oscillations Adam 94% smoother
Momentum usually helps, but given the small learning rate and the simplistic dataset, its impact is almost negligeable. Also, the huge oscillations you see in the cost come from the fact that some minibatches are more difficult thans others for the optimization algorithm.
Adam on the other hand, clearly outperforms mini-batch gradient descent and Momentum. If you run the model for more epochs on this simple dataset, all three methods will lead to very good results. However, you've seen that Adam converges a lot faster.
Some advantages of Adam include:
- Relatively low memory requirements (though higher than gradient descent and gradient descent with momentum)
- Usually works well even with little tuning of hyperparameters (except )
No comments