Coursera: Machine Learning-Andrew NG (Week 5) [Assignment Solution]





These solutions are for reference only.
try to solve on your own
but if you get stuck in between than you can refer these solutions

--------------------------------------------------------------------

function g = sigmoidGradient(z)
%SIGMOIDGRADIENT returns the gradient of the sigmoid function
%evaluated at z
%   g = SIGMOIDGRADIENT(z) computes the gradient of the sigmoid function
%   evaluated at z. This should work regardless if z is a matrix or a
%   vector. In particular, if z is a vector or matrix, you should return
%   the gradient for each element.

g = zeros(size(z));

% ====================== YOUR CODE HERE ======================
% Instructions: Compute the gradient of the sigmoid function evaluated at
%               each value of z (z can be a matrix, vector or scalar).


g = sigmoid(z) .* (1 - sigmoid(z));

% =============================================================

end



function W = randInitializeWeights(L_in, L_out)
%RANDINITIALIZEWEIGHTS Randomly initialize the weights of a layer with L_in
%incoming connections and L_out outgoing connections
%   W = RANDINITIALIZEWEIGHTS(L_in, L_out) randomly initializes the weights 
%   of a layer with L_in incoming connections and L_out outgoing 
%   connections. 
%
%   Note that W should be set to a matrix of size(L_out, 1 + L_in) as
%   the column row of W handles the "bias" terms
%

% You need to return the following variables correctly 
W = zeros(L_out, 1 + L_in);

% ====================== YOUR CODE HERE ======================
% Instructions: Initialize W randomly so that we break the symmetry while
%               training the neural network.
%
% Note: The first row of W corresponds to the parameters for the bias units
%

% Randomly initialize the weights to small values
epsilon_init = 0.12;
W = rand(L_out, 1 + L_in) * 2 * epsilon_init - epsilon_init;

% =========================================================================

end



function [J grad] = nnCostFunction(nn_params, ...
                                   input_layer_size, ...
                                   hidden_layer_size, ...
                                   num_labels, ...
                                   X, y, lambda)
%NNCOSTFUNCTION Implements the neural network cost function for a two layer
%neural network which performs classification
%   [J grad] = NNCOSTFUNCTON(nn_params, hidden_layer_size, num_labels, ...
%   X, y, lambda) computes the cost and gradient of the neural network. The
%   parameters for the neural network are "unrolled" into the vector
%   nn_params and need to be converted back into the weight matrices. 
% 
%   The returned parameter grad should be a "unrolled" vector of the
%   partial derivatives of the neural network.
%

% Reshape nn_params back into the parameters Theta1 and Theta2, the weight matrices
% for our 2 layer neural network
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
                 hidden_layer_size, (input_layer_size + 1));

Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
                 num_labels, (hidden_layer_size + 1));

% Setup some useful variables
m = size(X, 1);
         
% You need to return the following variables correctly 
J = 0;
Theta1_grad = zeros(size(Theta1));
Theta2_grad = zeros(size(Theta2));

% ====================== YOUR CODE HERE ======================
% Instructions: You should complete the code by working through the
%               following parts.
%
% Part 1: Feedforward the neural network and return the cost in the
%         variable J. After implementing Part 1, you can verify that your
%         cost function computation is correct by verifying the cost
%         computed in ex4.m

% Foward propagation
% a1 = X;
X = [ones(m,1) X]; % 5000*401
z2 = Theta1 * X'; % (25*401)*(401*5000)
a2 = sigmoid(z2); % (25*5000)

a2 = [ones(m,1) a2'];
z3 = Theta2 * a2';
h_theta = sigmoid(z3); % h_theta equals a3

% y(k) - the great trick - we need to recode the labels as vectors containing only values 0 or 1 (page 5 of ex4.pdf)
y_new = zeros(num_labels, m); % 10*5000
for i=1:m,
  y_new(y(i),i)=1;
end

J = (1/m) * sum ( sum ( (-y_new) .* log(h_theta) - (1-y_new) .* log(1-h_theta) ));

% Note we should not regularize the terms that correspond to the bias. 
% For the matrices Theta1 and Theta2, this corresponds to the first column of each matrix.
t1 = Theta1(:,2:size(Theta1,2));
t2 = Theta2(:,2:size(Theta2,2));

% Regularization
Reg = lambda  * (sum( sum ( t1.^ 2 )) + sum( sum ( t2.^ 2 ))) / (2*m);

% Regularized cost function
J = J + Reg;

% Part 2: Implement the backpropagation algorithm to compute the gradients
%         Theta1_grad and Theta2_grad. You should return the partial derivatives of
%         the cost function with respect to Theta1 and Theta2 in Theta1_grad and
%         Theta2_grad, respectively. After implementing Part 2, you can check
%         that your implementation is correct by running checkNNGradients
%
%         Note: The vector y passed into the function is a vector of labels
%               containing values from 1..K. You need to map this vector into a 
%               binary vector of 1's and 0's to be used with the neural network
%               cost function.
%
%         Hint: We recommend implementing backpropagation using a for-loop
%               over the training examples if you are implementing it for the 
%               first time.

% Back propagation
for t=1:m

    % Step 1
	a1 = X(t,:); % X already have a bias Line 44 (1*401)
    a1 = a1'; % (401*1)
	z2 = Theta1 * a1; % (25*401)*(401*1)
	a2 = sigmoid(z2); % (25*1)
    
    a2 = [1 ; a2]; % adding a bias (26*1)
	z3 = Theta2 * a2; % (10*26)*(26*1)
	a3 = sigmoid(z3); % final activation layer a3 == h(theta) (10*1)
    
    % Step 2
	delta_3 = a3 - y_new(:,t); % (10*1)
	
    z2=[1; z2]; % bias (26*1)
    % Step 3
    delta_2 = (Theta2' * delta_3) .* sigmoidGradient(z2); % ((26*10)*(10*1))=(26*1)

    % Step 4
	delta_2 = delta_2(2:end); % skipping sigma2(0) (25*1)

	Theta2_grad = Theta2_grad + delta_3 * a2'; % (10*1)*(1*26)
	Theta1_grad = Theta1_grad + delta_2 * a1'; % (25*1)*(1*401)
    
end;

% Step 5
Theta2_grad = (1/m) * Theta2_grad; % (10*26)
Theta1_grad = (1/m) * Theta1_grad; % (25*401)


% Part 3: Implement regularization with the cost function and gradients.
%
%         Hint: You can implement this around the code for
%               backpropagation. That is, you can compute the gradients for
%               the regularization separately and then add them to Theta1_grad
%               and Theta2_grad from Part 2.

% Regularization

% Theta1_grad(:, 1) = Theta1_grad(:, 1) ./ m; % for j = 0
% 
Theta1_grad(:, 2:end) = Theta1_grad(:, 2:end) + ((lambda/m) * Theta1(:, 2:end)); % for j >= 1 
% 
% Theta2_grad(:, 1) = Theta2_grad(:, 1) ./ m; % for j = 0
% 
Theta2_grad(:, 2:end) = Theta2_grad(:, 2:end) + ((lambda/m) * Theta2(:, 2:end)); % for j >= 1

% Unroll gradients
grad = [Theta1_grad(:) ; Theta2_grad(:)];

end


darkmode